ConcurrentHashMap
1.7:
Segment:存放数据时首先需要定位到具体的 Segment 中
1.8:
CAS + synchronized (数组+链表+红黑数的数据结构)
Hash算法
1.为什么要高16位与低16位异或:
作用:可以将高低位的二进制特征混合,并且可以减少hash碰撞(hash碰撞指的是两个不同的值经过hash后得到的值相同)
在HashMap中,使用的链地址法(同样hash值的存在同一个table节点)。
(n - 1) & h: n为table的大小, (n-1)&h 保证了最终结果会落在table大小中.在这,若h不进行^操作,则只与低位&,
那只要低位相同则hash就会落在同一个节点,若(h ^ (h >>> 16))后,h中包含了低位与高位的信息,需要他们高位和
低位都相同才会落在同一个table节点,以此来减少hash碰撞。
class ConcurrentHashMap{
Class<?> ak = Node[].class;
//arrayIndexScale获取Node[]中一个元素的大小, ASHIFT即为(31-前置0的个数)剩下的就是, 每一个元素的占用的位数
//U.arrayIndexScale(ak)这个是数组每一格的指针占用位数
//Integer.numberOfLeadingZeros(U.arrayIndexScale(ak)) 这个是占用位数用二进制表示的前导0个数
//31 - Integer.numberOfLeadingZeros(U.arrayIndexScale(ak)) 这个是占用位数用二进制表示的长度
//类似Array.getLength(Object array)方法
private static final int ASHIFT = 31 - Integer.numberOfLeadingZeros(U.arrayIndexScale(ak));
//获取Node[]第一个元素的偏移地址
private static final long ABASE = U.arrayBaseOffset(ak);
//int最大值为(1111...1111)
static final int HASH_BITS = 0x7fffffff;
//链表转红黑树的数量
static final int TREEIFY_THRESHOLD = 8;
//用高16位与低16位异或
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
//获取table在这hash位置的节点,ASHIFT每个节点的占用字节数,
// offset(ABASE) + scale * Array.getLength(array) (scale * i 等于i << ASHIFT等于 i*2^scale)
//其实就是i*指针大小,若指针大小为64则,i*64=i<<8
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}
//get方法
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
//高位与低位异或
int h = (key.hashCode());
//(n - 1) & h [n为2的幂次,所以n-1为000...1.., &h则是取h低n位的值]
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
//hash和取出节点相同,则就是当前的值
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//hash结构小于0,为红黑树
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
//hash值不同,但不为负,说明是链表
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
//put方法
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
//高位与低位异或
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
//table不存在,初始化table
tab = initTable();
//当前hash要的node节点不存在
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//保存一个新的节点
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break;
}
//当前节点在扩容
else if ((fh = f.hash) == MOVED)
//帮助扩容
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//对当前节点上锁
synchronized (f) {
//判断当前节点是否正常
if (tabAt(tab, i) == f) {
//hash值>0,说明是状态正常
if (fh >= 0) {
//链表节点数量
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
//若是当前链表节点,则更新值
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
//若存在则不修改值
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
//若最后都没有找到,则新建一个节点
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//若节点是红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//若链表节点数量不为0
if (binCount != 0) {
//若链表节点数量大于8将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
}
数据结构
ConcurrentHashMap中一共两种数据结构:链表、红黑树
链表:当节点数量小于8时
红黑树: 当节点数量大于8时会由链表转红黑树,数量小于6会由红黑树转为链表
注: 为什么是8和6?
因为红黑树的查询时间复杂度是O(log(n))、链表的平均时间复杂度为O(n/2),长度为8时,log8=3,n/2=4,红黑树更快.
而在6转回链表,是为了在链表和红黑树之间转换过于频繁。
红黑树中key的顺序
1.根据hashcode判断,因为是二叉搜索树所以顺序按照当前节点比左节点大,比右节点小。
(hashcode小了找左子树,大了找右子树)
2.当hashcode相同并且 equels方法得出结果相同或者对象指针相同,则代表是当前节点
3.当hashcode相同但是equels并不等,则根据Comparable方法,比较当前节点key与查询key
的比值。
4.若Comparable得出的结果还相同,比较原始的hashcode(System.identityHashCode())
5.若还相等则默认插入左子节点
class ConcurrentHashMap{
//最小出现红黑树的table大小
static final int MIN_TREEIFY_CAPACITY = 64;
//节点,用作链表,红黑树节点继承它
static class Node<K,V> implements Map.Entry<K,V> {
//key的hash值
final int hash;
//key
final K key;
//value
volatile V val;
//链表的下一个节点
volatile Node<K,V> next;
Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return val; }
public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
public final String toString(){ return key + "=" + val; }
public final V setValue(V value) {
throw new UnsupportedOperationException();
}
public final boolean equals(Object o) {
Object k, v, u; Map.Entry<?,?> e;
return ((o instanceof Map.Entry) &&
(k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
(v = e.getValue()) != null &&
(k == key || k.equals(key)) &&
(v == (u = val) || v.equals(u)));
}
/**
* 链表的查找
*/
Node<K,V> find(int h, Object k) {
Node<K,V> e = this;
if (k != null) {
do {
K ek;
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} while ((e = e.next) != null);
}
return null;
}
}
//红黑树节点
static final class TreeNode<K,V> extends Node<K,V> {
//父节点
TreeNode<K,V> parent;
//左节点
TreeNode<K,V> left;
//右节点
TreeNode<K,V> right;
TreeNode<K,V> prev;
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next,
TreeNode<K,V> parent) {
super(hash, key, val, next);
this.parent = parent;
}
Node<K,V> find(int h, Object k) {
return findTreeNode(h, k, null);
}
/**
* 红黑树的查找
*/
final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
if (k != null) {
TreeNode<K,V> p = this;
do {
//ph当前节点的hash
int ph, dir; K pk; TreeNode<K,V> q;
TreeNode<K,V> pl = p.left, pr = p.right;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.findTreeNode(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
}
return null;
}
}
//链表转红黑树
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
//若table大小小于64
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
//table扩容,说明table小并且冲突严重
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
//对当前node上锁
synchronized (b) {
if (tabAt(tab, index) == b) {
//将链表转化为双向链表
//hd:root节点,tl上一个节点
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
//new TreeBin():将双向链表转化为红黑树
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
}
负载因子与表的容量:
在ConcurrentHashMap中,负载因子默认为0.75.[sizeCtl = n - (n >>> 2)].
注: 负载因子为什么是0.75?
一.降低hash的冲突 (查询时间)
二.防止哈希表过大,占用过多内存。 (占用内存空间)
sizeCtl用与控制表的初始化与扩容:
-1: 表在初始化
-N: 扩容中, (最低位-1)个活跃线程
N: 表容量*负载因子(达到该值需要扩容) ```java class ConcurrentHashMap{
//表的初始容量,表的容量为2的幂次
private static final int DEFAULT_CAPACITY = 16;
//用于表的初始化和扩容
private transient volatile int sizeCtl;
//得出2的幂次, 把最高为的1右移到每一位上,使得最高位右边全是1,然后+1,得到的便是2的幂次
private static final int tableSizeFor(int c) {
int n = c - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
} } ```
表的初始化
当table为null或者table.size为0时初始化
class ConcurrentHashMap{
transient volatile Node<K,V>[] table;
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
// sizeCtl<0 说明已经有其他的线程在进行初始化
if ((sc = sizeCtl) < 0)
//让出cpu,使得当前wihle空旋,等待其他线程初始化table
Thread.yield();
//若table还没初始化,将SIZECTL设置为-1,表明正在初始化
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
//在做一次判断,防止重复扩容
if ((tab = table) == null || tab.length == 0) {
//设置默认容量16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
//初始化table
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
//计算需要扩容的值 表容量*负载因子 0.75
sc = n - (n >>> 2);
}
} finally {
//需要扩容的值 表容量*负载因子
sizeCtl = sc;
}
break;
}
}
return tab;
}
}
表的扩容
扩容的触发:
1.sizeCtl(当前size>=sizeCtl,sizeCtl为 table*负载因子)
2.当table.length<64,并且出现单个链表长度大于8,说明table太小并且hash冲突严重,这时候扩容而不是链表转化成红黑树。
binCount:
binCount<0: 不需要扩容
0<binCount<=1: 只需要检查是否有锁的竞争
binCount:(链表时表示为链表节点个数,红黑树恒为2) CounterCell:
节点数量计数,相当于LongAdder,可以看做是一个AtomicLong,是将值拆分存储,减少写时资源竞争。
class ConcurrentHashMap{
//最大容量
private static final int MAXIMUM_CAPACITY = 1 << 30;
private static int RESIZE_STAMP_BITS = 16;
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
//check为binCount
private final void addCount(long x, int check) {
//CounterCell 计数器,相当于LongAdder
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
//当s(总数)> =sizeCtl时进行扩容
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
//低位为从高位开始到第一个非0时的个数,例如n=16,rs的低位为27(011011)
int rs = resizeStamp(n);
// sizeCtl为负数,代表正在扩容
if (sc < 0) {
//
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
//若sizeCtl的值相同,则可以多线程扩容,并将sc+1
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
//协助扩容,nt:新table,协助将老数据迁入新表
transfer(tab, nt);
}
// 如果是sc为正数,上CAS锁,开始扩容,设置 sc的值
// sc的值为 resizeStamp的值+2
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
//开始扩容
transfer(tab, null);
s = sumCount();
}
}
}
//第16位为1,低位可看作存储n (16位为1是因为在<<16后能将sc变成负值)
static final int resizeStamp(int n) {
return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
}
//从高位开始到第一个非0时,0的位数
public static int numberOfLeadingZeros(int i) {
// HD, Figure 5-6
if (i == 0)
return 32;
int n = 1;
if (i >>> 16 == 0) { n += 16; i <<= 16; }
if (i >>> 24 == 0) { n += 8; i <<= 8; }
if (i >>> 28 == 0) { n += 4; i <<= 4; }
if (i >>> 30 == 0) { n += 2; i <<= 2; }
n -= i >>> 31;
return n;
}
}
开始扩容
将原表的数据迁移到新表
class ConcurrentHashMap{
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
//stride ,计算每个cpu需要迁移桶的数量
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
//默认16个
stride = MIN_TRANSFER_STRIDE;
//创建新的表,若是协助扩容的线程,则不需要创建
if (nextTab == null) {
try {
//扩容一倍
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) {
//扩容失败,可能是内存溢出,将sizeCtl设置成最大值,使ConcurrentHashMap不再扩容
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
//扩容时下个表的索引
transferIndex = n;
//传输标识节点,在传输过程加入头节点,使其他线程读取当前节点时,hash标识为MOVE
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false;
//i:代表table的第几个节点
//bound: 处理的边界,处理到这为止
//stride:当次处理的个数
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
//可以看作领取任务,获取i为分配的任务起始点,bound为任务的终点
//stride为要处理的任务数,处理完了会重新领取stride个
while (advance) {
int nextIndex, nextBound;
//当前所在节点-1 还大于
if (--i >= bound || finishing)
advance = false;
//无可以领取的任务
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
//领取任务
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
//i的值不在table范围了
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
//判断finishing标识
if (finishing) {
//如果迁移结束了,将nextTable置空,当前table设置为新的table,并重新设置sizeCtl值
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
//如果标识没设置为结束,先更新下SIZECTL的值,线程数-1,
//直到线程为1,表示只有当前线程了,其他线程都已经处理结束了
//可以设置finishing表示
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n;
}
}
//当前节点为空
else if ((f = tabAt(tab, i)) == null)
//将原table当前节点设置为迁移节点,设置成功并重新领取任务
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
//当前节点已经是迁移节点,重新去领取任务
advance = true;
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
//hash值大于0,是链表
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
//判断hash值,因为会出现所以hash在扩容后或者扩容前的链表
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
//(ph & n) == 0 代表在扩容前的链表,否则在扩容后
// 因为扩容后table.length为2n
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
//设置链表
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
//将原节点设置为迁移中
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
//红黑树迁移
//同链表差不多,先按照hash值转化成两个双向链表,双向链表再生成红黑树
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
}
红黑树
static final class TreeBin<K,V> extends Node<K,V> {
TreeNode<K,V> root;
volatile TreeNode<K,V> first;
volatile Thread waiter;
volatile int lockState;
// values for lockState
static final int WRITER = 1; // set while holding write lock
static final int WAITER = 2; // set when waiting for write lock
static final int READER = 4; // increment value for setting read lock
/**
* Tie-breaking utility for ordering insertions when equal
* hashCodes and non-comparable. We don't require a total
* order, just a consistent insertion rule to maintain
* equivalence across rebalancings. Tie-breaking further than
* necessary simplifies testing a bit.
*/
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
/**
* Creates bin with initial set of nodes headed by b.
*/
TreeBin(TreeNode<K,V> b) {
super(TREEBIN, null, null, null);
this.first = b;
TreeNode<K,V> r = null;
for (TreeNode<K,V> x = b, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (r == null) {
x.parent = null;
x.red = false;
r = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = r;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
r = balanceInsertion(r, x);
break;
}
}
}
}
this.root = r;
assert checkInvariants(root);
}
/**
* Acquires write lock for tree restructuring.
*/
private final void lockRoot() {
if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
contendedLock(); // offload to separate method
}
/**
* Releases write lock for tree restructuring.
*/
private final void unlockRoot() {
lockState = 0;
}
/**
* Possibly blocks awaiting root lock.
*/
private final void contendedLock() {
boolean waiting = false;
for (int s;;) {
if (((s = lockState) & ~WAITER) == 0) {
if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
if (waiting)
waiter = null;
return;
}
}
else if ((s & WAITER) == 0) {
if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
waiting = true;
waiter = Thread.currentThread();
}
}
else if (waiting)
LockSupport.park(this);
}
}
/**
* Returns matching node or null if none. Tries to search
* using tree comparisons from root, but continues linear
* search when lock not available.
*/
final Node<K,V> find(int h, Object k) {
if (k != null) {
for (Node<K,V> e = first; e != null; ) {
int s; K ek;
if (((s = lockState) & (WAITER|WRITER)) != 0) {
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
e = e.next;
}
else if (U.compareAndSwapInt(this, LOCKSTATE, s,
s + READER)) {
TreeNode<K,V> r, p;
try {
p = ((r = root) == null ? null :
r.findTreeNode(h, k, null));
} finally {
Thread w;
if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
(READER|WAITER) && (w = waiter) != null)
LockSupport.unpark(w);
}
return p;
}
}
}
return null;
}
//put时调用
final TreeNode<K,V> putTreeVal(int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if (p == null) {
//若没有根节点创建新节点
first = root = new TreeNode<K,V>(h, k, v, null, null);
break;
}
//左节点
else if ((ph = p.hash) > h)
dir = -1;
//右节点
else if (ph < h)
dir = 1;
//当前节点
else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
return p;
//若hashcode相同,但是equels不等
//k不是实现Comparable类或者实现了当前节点的key与插入节点的key相等
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.findTreeNode(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.findTreeNode(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
//若左节点或者右节点
if ((p = (dir <= 0) ? p.left : p.right) == null) {
TreeNode<K,V> x, f = first;
//创建一个子节点
first = x = new TreeNode<K,V>(h, k, v, f, xp);
if (f != null)
f.prev = x;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
//设置是红黑节点,父节点是黑色,当前节点是红色
if (!xp.red)
x.red = true;
else {
//对跟节点上锁
lockRoot();
try {
//旋转树,达到平衡
root = balanceInsertion(root, x);
} finally {
unlockRoot();
}
}
break;
}
}
assert checkInvariants(root);
return null;
}
/**
* Removes the given node, that must be present before this
* call. This is messier than typical red-black deletion code
* because we cannot swap the contents of an interior node
* with a leaf successor that is pinned by "next" pointers
* that are accessible independently of lock. So instead we
* swap the tree linkages.
*
* @return true if now too small, so should be untreeified
*/
final boolean removeTreeNode(TreeNode<K,V> p) {
TreeNode<K,V> next = (TreeNode<K,V>)p.next;
TreeNode<K,V> pred = p.prev; // unlink traversal pointers
TreeNode<K,V> r, rl;
if (pred == null)
first = next;
else
pred.next = next;
if (next != null)
next.prev = pred;
if (first == null) {
root = null;
return true;
}
if ((r = root) == null || r.right == null || // too small
(rl = r.left) == null || rl.left == null)
return true;
lockRoot();
try {
TreeNode<K,V> replacement;
TreeNode<K,V> pl = p.left;
TreeNode<K,V> pr = p.right;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
r = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
r = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
root = (p.red) ? r : balanceDeletion(r, replacement);
if (p == replacement) { // detach pointers
TreeNode<K,V> pp;
if ((pp = p.parent) != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
p.parent = null;
}
}
} finally {
unlockRoot();
}
assert checkInvariants(root);
return false;
}
/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLR
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
//平衡红黑树
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
//xp:父节点
//xpp:祖父节点
//xppl/xppr:叔叔节点
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
//1.当前节点父节点为null,当前节点为黑色
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
//2.父节点为黑色节点,且祖父节点为null,则返回原先的root节点
else if (!xp.red || (xpp = xp.parent) == null)
return root;
//3.查看叔叔节点
//(若叔叔节点是红色,把叔叔节点/父节点设置为黑色,祖父节点为红色)
//(若叔叔节点是黑色,父节点是右节点左旋,是左节点右旋)
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
//把节点置到祖父节点,接着循环,直到root返回
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
if (xpr == null)
x = xp;
else {
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
if (sl != null)
sl.red = false;
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}
/**
* Recursive invariant check
*/
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K,V>)t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
private static final sun.misc.Unsafe U;
private static final long LOCKSTATE;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> k = TreeBin.class;
LOCKSTATE = U.objectFieldOffset
(k.getDeclaredField("lockState"));
} catch (Exception e) {
throw new Error(e);
}
}
}
能摸鱼就很舒服
Show Disqus Comments
扫码关注公众号:纯洁的微笑
发送 290992
即可立即永久解锁本站全部文章